• 基于DSP的高性能通用并行弹载计算机设计与实现
  • 基于DSP的高性能通用并行弹载计算机设计与实现

    基于DSP的高性能通用并行弹载计算机设计与实现
     
      随着技术的发展,在导弹控制和通信等领域,需要处理的任务规模越来越大。虽然随着VLSI技术的发展,已产生了运算能力达每秒几十亿次的处理器,但还远远不能满足这些领域的需求。而VLSI技术的发展已受到其开关速度的限制,进一步提高处理器主频遇到的困难越来越大。为此,把用于大型计算机的并行处理技术应用到信号处理中来,在信号处理系统中引入并行多处理器技术是必然趋势。传统弹载计算机一般针对特定场合,先确定算法,再根据算法确定系统结构,由于系统结构与算法严格相关,因此通用性较差。随着一些标准技术(标准板型、接口、互联协议等)在弹上控制系统中的应用,设计标准化、模块化的通用型计算机成为了可行。而且所设计的还要可扩展、可重构,进而根据不同的应用场合和算法构建各种弹载计算机系统。
     
      以上讨论的是假设任意两个处理器之间可以直接进行数据交换,而在实际情况下,尤其是处理器数目p多于处理器的通信口数量时,两个非直接相连的处理器之间的数据交换所需开销与其经过的路径成正比关系。但这并不影响以上讨论的公式。因为在规则网络拓扑结构中最大或平均路径是一个定值n,那么这时,分布式并行系统的加速比公式为:
      在这种情况下分布式并行系统同样能获得线性加速比。由以上理论分析可知,共享总线并行结构适合共享存储编程模型,进行细粒度的并行处理,但其扩展性能较差,处理器的数目有限,单机处理性能有限;分布式并行结构采用消息传递的机制,适合进行粗粒度的并行处理,便于大规模的系统扩展,提供强大的整体性能。
      DSP+FPGA共享总线型处理节点
      弹上控制和信号处理系统中,低层的信号处理算法处理的数据量大,对处理速度要求高,但运算结构相对简单,适于用FPGA实现,这样能同时兼顾速度及灵活性。高层处理算法处理的数据量较低层算法少,但算法的控制结构复杂,适于用运算速度高,寻址方式灵活,通信机制强大的DSP来实现。
      为此,笔者设计的弹载计算机主要包括DSP,FP-GA,SDRAM和CPLD。DSP主要实现数据的高层算法处理和控制,FPGA实现对外的接口,并可对输入输出的数据进行低层算法预处理,SDRAM用来缓存数据,CPLD用来实现一些辅助逻辑。选用的DSP芯片是ADI公司的TS201,单片处理能力3.6GFLOPS,内核时钟频率600MHz,片内内存24Mb,125MHz/64b片外总线,具有1GB的SDRAM访问能力,还有4个Link口,每个Link口收发独立,最高带宽为1.2GB/s。
      所有特点都使得TS201适合多片扩展,构成一个大规模高性能的信号处理系统。选用的FPGA芯片为Xilinx公司的VirtexⅡpro系列XC2VP20,它的规模约200万门,内部集成了1584Kb的RAM,88个18×18b的乘法器,8个传输速率可达3.125Gb/s的Rock-etIO高速通道,这些特点使得该FPGA适合实现数据的传输和预处理。而且它的管脚兼容XC2VP30/40,可实现FPGA规模的进一步扩展。每个处理节点包括两片TS201,一片FPGA,最高4GB的SDRAM,以及一片CPLD,并共享总线。之所以只用两片TS201,是考虑到总线上设备太多,会使得总线时钟频率降低,带宽变小,并行度和效率都不高。两片TS201共享总线充分发挥了处理能力、传输能力、存储能力的匹配性。TS201总线上的SDRAM最高支持1GB的空间,通过CPLD进行逻辑控制,可使SDRAM扩展到4GB,增加了存储能力,适应大容量存储应用的场合。
     
      并行计算机是解决信号处理控制领域任务规模不断增大、问题不断复杂的关键技术。本文在分析了共享总线和分布式并行两种并行模型优缺点的基础上,设计并实现了一种适应信号处理系统需求的混合并行、多层次互联、标准化、模块化、可扩展、可重构的高性能通用并行弹载计算机。实际中,使用该弹载计算机,配合相应的I/O模块,构建了多个相控阵雷达、合成孔径雷达、图像处理等弹载计算机系统,获得了广泛的应用,验证了该弹载计算机的高性能、通用性。

    更多型号芯片解密可致电北京致芯科技24小时服务热线:13466687255 010-57436217

    点击这里给我发消息 点击这里给我发消息

      Copyright © 2004-2012 致芯科技 版权所有